Purine Studies. Part XI.¹ Condensation of Tetraethoxymethane and Similar Orthocarbonates with ortho-Diamines to give 8-Ethoxypurines and Related Fused Imidazoles

By Desmond J. Brown * and Robert K. Lynn, John Curtin School of Medical Research, P.O. Box 334, Canberra City, Australia 2601

4.5-Diaminopyrimidines are converted by boiling tetraethoxy-, tetrapropoxy-, and tetrakismethylthio-methane into the corresponding 8-alkoxy- or 8-methylthio-purines. By conducting the first stage of the reaction at 25° in the presence of acetic acid, the intermediate diethoxymethyleneaminopyrimidines (3) may be isolated prior to thermal cyclization. 5,6-Diaminopyrimidine-2(and 4)-thiones normally undergo S-alkylation by the orthocarbonate as well as cyclization but, under acidic conditions, the 4-thiones yield 2-alkoxy-7-aminothiazolo[5,4-d]pyrimidines (4) instead of purines. Treatment of o-phenylenediamine, 2,3-diaminonaphthalene, and 2,3-diaminopyridine with a tetra-alkoxymethane gives the appropriate 2-alkoxylated benzimidazole (5; X = CH), naphth[2,3-d]imidazole (6), or imidazo[4,5-b]pyridine (5; X = N). Ionization constants, u.v. absorption, and ¹H n.m.r. data are recorded and discussed.

TETRAETHOXYMETHANE (tetraethyl orthocarbonate) has recently proved effective for converting 5-amino-1,2,3-triazole-4-carbaldehydes into the corresponding 5-diethoxymethyleneamino-derivatives for cyclization by amines to 5-ethoxy-v-triazolo[4,5-d]pyrimidines;² also for converting 5-amino-4-hydrazinopyrimidines into their 4-diethoxymethylenehydrazino-analogues prior to cyclization and subsequent oxidation to 3-ethoxypyrimido[5,4-e]-as-triazines.³ We now report the somewhat analogous use of tetraethoxy-,⁴ tetrapropoxy-,⁵ and tetrakismethylthio-methane⁶ for converting 4,5-diaminopyrimidines into 8-alkoxy- or 8alkylthio-purines, e.g. (1; $R^3 = Pr$) or (2; $R^3 = SMe$); 5-amino-6-methylaminopyrimidine-4-thione into 2-alkoxy-7-methylaminothiazolo[5,4-d] pyrimidines (4); 0phenylenediamine into 2-alkoxybenzimidazoles (5; X =CH); 2,3-diaminonaphthalene into 2-alkoxynaphth-[2,3-d]imidazoles (6); and 2,3-diaminopyridine into 2-alkoxyimidazo[4,5-b]pyridines (5; X = N).

When 5-amino-4-methylaminopyrimidine was boiled in tetraethoxymethane for several hours the purine (1a) resulted; in contrast, the isomeric 4-amino-5-methylaminopyrimidine gave the corresponding purine (2; $R^1 = H$, $R^2 = Me$, $R^3 = OEt$) only when 1 equiv. of glacial acetic acid was added to the reaction mixture. A similar procedure (without acetic acid) converted appropriate pyrimidines into the purines (1b-d) and (2; $R^1 = Me$, $R^2 = H$, $R^3 = OEt$) but with pyrimidines bearing an alkythio-group, it proved better (or even essential) to use mild conditions in the presence of acetic acid to give first the uncyclized 5-diethoxymethyleneamino-intermediates (3a and b) which underwent thermal cyclization to the purines (le) and (lf), respectively. In extending this reaction to 4,5-diaminopyrimidinethiones, S-alkylation by the orthocarbonate frequently occurred as a side reaction: 5-amino-6-methylaminopyrimidine-4-thione gave the 8-ethoxy-6-ethylthiopurine (1f) or the 8-propoxy-6-pro-

¹ Part X, R. J. Badger, D. J. Brown, and J. H. Lister, J.C.S. Perkin I, 1974, 152.

² A. Albert and H. Taguchi, J.C.S. Perkin I, 1973, 2037.

³ D. J. Brown and R. K. Lynn, Austral. J. Chem., 1973, 26, 1689.

⁴ J. D. Roberts and R. E. McMahon, Org. Synth., 1952, 32, 68.

pylthiopurine (lg), according to whether tetraethoxyor tetrapropoxy-methane was used; and 5-amino-4-methyl-6-methylaminopyrimidine-2-thione gave first the S-alkylated intermediate (3c) and thence the

purine (1h). Such S-alkylations have also been observed recently 7 when using the orthoesters of simple carboxylic acids in the presence of anhydrides. Although 4,5-diaminopyrimidine reacted with tetrakismethylthiomethane to give 8-methylthiopurine (2; $R^1 = R^2 = H$, $R^3 = SMe$) via the intermediate 4amino-5-(bismethylthio)methyleneaminopyrimidine, the

⁵ H. Tieckelmann and H. W. Post, J. Org. Chem., 1948, 13,

<sup>265.
&</sup>lt;sup>6</sup> H. J. Backer and P. L. Stedehouder, *Rec. Trav. chim.*, 1933, 52, 923. ⁷ R. J. Badger, D. J. Brown, and J. H. Lister, *J.C.S. Perkin I*,

^{1973, 1906.}

same diamine and its 6-chloro-derivative with tetraethoxymethane gave only the pyrimidines (3d) and (3e), respectively, which we were unable to cyclize. When 5-amino-6-methylaminopyrimidine-4-thione was allowed to react with tetraethoxy- or tetrapropoxymethane (as above) but with acetic acid present, the thioxo- rather than the methylamino-substituent became involved in ring formation to give the thiazolo-[5,4-d] pyrimidines (4; R = Et or Pr) instead of the expected purines (If and g) (cf. the analogous behaviour of similar diaminopyrimidinethiones with simple carboxylic acids as cyclizing agents^{8,9}).

Under remarkably mild conditions, o-phenylenediamine and 2,3-diaminonaphthalene were converted by the appropriate tetra-alkoxymethanes (and acetic acid) into the benzimidazoles (5; R = Et or Pr, X = CH) and the naphthimidazoles (6; R = Et or Pr); under more vigorous conditions, 2,3-diaminopyridine underwent similar cyclization to the imidazo [4,5-b] pyridines (5; R = Et or Pr; X = N) but 3,4-diaminopyridine did not so react.

The basic strength of 8-ethoxypurine (expected to be similar to that of 8-methoxypurine,⁹ pK_a 3.14), was raised a little in its 7-methyl (Table 1) (3.48) and 9methyl¹⁰ (3.45) derivatives and only one unit further by an additional powerfully electron-donating 6-substituent in the purines (1c and d) (pK_a 4.64 and 4.37, respectively). In contrast, the addition of 2 more C-methyl groups to 8-ethoxypurine gave the derivative (2; $R^1 = Me$, $R^2 = H$, $R^3 = OEt$), with pK_a 4.71. The appreciable base-weakening by insertion of a 6-methylthio-group [(1a) $3.45 \rightarrow$ (1e) 1.82] suggested that the basic centre must be adjacent at N-1 for such a purely inductive effect to operate so strongly (cf. Reichman et al.¹¹). The p K_a values for the thiazolo[5,4-d]pyrimidines, benzimidazoles, and naphth[2,3-d]imidazoles proved comparable with those recorded for analogous members of the respective series.9, 12, 13 The addition of a ring-nitrogen atom had the usual acid-strengthening effect in passing from the benzimidazole (5; R = Et, X = CH) (pK_a 11.60) to the imidazo[4,5-b]pyridine (5; R = Et, X = N) (p K_a 9.97) but also an unexpected small base-strengthening effect $(4.39 \rightarrow 4.58)$ which suggested a change of protonation site to the pyridine nitrogen atom. The acid-strengthening (inductive) effect of an 8-alkoxygroup on 7(9)-unsubstituted purines (cf. data in Table 1 and ref. 14) was appreciable.

The u.v. spectra (Table 1) of the purines and thiazolopyrimidines confirmed their structures by closely resembling recorded data 9,14 for analogous derivatives. The spectra for the naphthimidazoles (6) showed con-

⁸ G. B. Elion, W. H. Lange, and G. H. Hitchings, J. Amer. Chem. Soc., 1956, 78, 2858.

D. J. Brown and S. F. Mason, J. Chem. Soc., 1957, 682.
 G. B. Barlin, J. Chem. Soc. (B), 1967, 954.
 U. Reichman, F. Bergmann, D. Lichtenberg, and Z. Neiman,

J. C.S. Perkin I, 1973, 793.
 ¹² D. D. Perrin, 'Dissociation Constants of Organic Bases in Aqueous Solution,' Butterworths, London, 1965.
 ¹³ D. J. Brown, J. Chem. Soc., 1958, 1974.

siderable fine structure, even in aqueous solution: their most intense peaks had log ε values approaching 5 (cf. ref. 13). The ¹H n.m.r. spectra (Table 2) were consistent with assigned structures and provided the only confirmation for the pyrimidine intermediates (3).

EXPERIMENTAL

Analyses were performed by the Australian National University Analytical Services Unit. The u.v. spectra were recorded on a Unicam SP 1800 instrument and peak data were checked on a manually operated instrument.

8-Alkoxypurines.-Each diaminopyrimidine was stirred in an excess of the appropriate tetra-alkoxymethane, with or without acetic acid (1 mol. equiv.), under the stated conditions. Concentration and/or refrigeration gave the crude product, which was purified by t.l.c. (chloroform-methanol), recrystallization, or sublimation. For example, 5-amino-4-methylaminopyrimidine 15 (0.47 g) was stirred for 6 h in refluxing tetraethoxymethane⁴ (10 ml). Concentration under reduced pressure to ca. 2 ml and subsequent cooling gave a solid which was triturated with a little light petroleum and then recrystallized from ethanol to give 8-ethoxy-9-methylpurine (1a) (0.36 g), m.p. 99° (lit., 10 95-96°); u.v. spectra identical with those recorded. io

By such means, 4-amino-5-methylaminopyrimidine ¹⁶ (AcOH; 65°; 33 h) gave 8-ethoxy-7-methylpurine (2; $R^{1} = H$, $R^{2} = Me$, $R^{3} = OEt$) (41%), m.p. 163° (from benzene) (Found: C, 54.2; H, 5.6; N, 31.6. C₈H₁₀N₄O requires C, 53.9; H, 5.7; N, 31.4%); 5-amino-4-chloro-6-methylaminopyrimidine 15 (reflux; 44 h) gave 6-chloro-8-ethoxy-9-methylpurine (1b) (58%), m.p. 143° (from water) (Found: C, 45.5; H, 4.4; N, 26.7. $C_8H_9ClN_4O$ requires C, 45.2; H, 4.3; N, 26.3%); 5-amino-4-dimethylamino-6-methylaminopyrimidine ¹⁷ (reflux; 20 h) gave 6-dimethylamino-8-ethoxy-9-methylpurine (1c) (81%), m.p. 113° (t.l.c.; sublimation at 65° and 0.04 mmHg) (Found: C, 54.5; H, 6.7; N, 32.0. C₁₀H₁₅N₅O requires C, 54.3; H, 6.8; N, 31.65%); 5-amino-4,6-bismethylaminopyrimidine 18 (reflux; 33 h) gave 8-ethoxy-9-methyl-6-methylaminopurine (1d) (70%), m.p. 151-152° (from ethanol after sublimation at 95° and 0.1 mmHg) (Found: C, 52.0; H, 6.0; N, 33.5. C₉H₁₃N₅O requires C, 52.2; H, 6.3; N. 33.8%); 4.5-diamino-2,6-dimethylpyrimidine ¹⁹ (reflux; 8 h) gave a crude product which was fully cyclized by heating at 175° for 1 h before sublimation (130° at 0.1 mmHg) to give 8-ethoxy-2,6-dimethylpurine (2; $R^1 = Me$, $R^2 = H$, $R^3 = OEt$) (37%), m.p. >224° (decomp.) (Found: C, 56.0; H, 6.3; N, 29.3. C₉H₁₂N₄O requires C, 56.2; H, 6.3; N, 29.15%); 5-amino-4-methylamino-6-methylthiopyrimidine 20 (AcOH; 25°; 6 h) gave 5-diethoxymethyleneamino-4-methylamino-6-methylthiopyrimidine (3a) (>90%), m.p. 116-117° (from ethanol) (Found: C, 48.9; H, 6.6; N, 20.8. $C_{11}H_{18}N_4O_2S$ requires C, 48.9; H, 6.7; N, 20.7%), which was cyclized by heating at 200° for 20 min to give 8-ethoxy-9-methyl-6-methylthiopurine (1e)

¹⁴ P. D. Lawley in J. H. Lister, 'Purines,' Wiley, New York, 1971, p. 439 *et seq.*; A. Albert in 'Synthetic Procedures in Nucleic Acid Chemistry,' ed. W. W. Zorbach and R. S. Tipson, Wiley, New York, 1973, vol. 2, pp. 1, 47.

- ¹⁵ D. J. Brown, J. Appl. Chem., 1954, 4, 72.
 ¹⁶ D. J. Brown, J. Appl. Chem., 1955, 5, 358.
 ¹⁷ D. Söll and W. Pfleiderer, Chem. Ber., 1963, 96, 2977.
 ¹⁸ D. J. Brown and N. W. Jacobsen, J. Chem. Soc., 1960, 1978.
 ¹⁹ R. N. Prasad, C. W. Noell, and R. K. Robins, J. Amer. Chem.
- Soc., 1959, 81, 193. ²⁰ D. J. Brown, J. Appl. Chem., 1956, 7, 109.

(62%), m.p. 119° (Found: C, 48·3; H, 5·5; N, 25·3. $C_{9}H_{12}N_{4}OS$ requires C, 48.2; H, 5.4; N, 25.0%); 5-amino-6-methylaminopyrimidine-4-thione 20 (reflux; 9 h) gave 8-ethoxy-6-ethylthio-9-methylpurine (1f) (54%), m.p. 79-80° (from light petroleum) (Found: C, 50.8; H, 6.0; N, 23.9. C₁₀H₁₄N₄OS requires C, 50.4; H, 5.9; N, 23.5%) {the same pyrimidinethione 20 (1.5 g), N-potassium hydroxide (11 ml), and ethyl iodide (0.9 ml) were shaken for 3 h, set aside for 12 h, and then refrigerated; the 5-amino-4-ethylthio-6-methylaminopyrimidine (1.64 g) had m.p. 91° [after recrystallization from water and drying (P_2O_5) at 65° and 760 mmHg] (Found: C, 45.6; H, 6.7; N, 30.5. $C_7H_{12}N_4S$ requires C, 45.65; H, 6.6; N, 30.4%); this pyrimidine (0.5 g), tetraethoxymethane (2.5 ml), and acetic acid (0.12 g) were stirred at $25-30^{\circ}$ for 18 h; refrigeration gave 5-diethoxymethyleneamino-4-ethylthio-6methylaminopyrimidine (3b) (0.58 g), m.p. 94° (from light petroleum) (Found: C, 50.9; H, 7.1; N, 19.7. C₁₂-H₂₀N₄O₂S requires C, 50.7; H, 7.1; N, 19.7%); the diethoxymethylene derivative (0.1 g) was heated in a

TABLE 1

Ionization data and u.v. spectra

Compound Purines	pKa ª	λ_{\max} (log ε) ^b [solvent or pH]
8-OEt-7-Me	$3{\cdot}48\pm0{\cdot}02$	274 (4.08) [1.0]
6-Cl-8-OEt-9-Me		275 (4·05), 235 (3·48) [9·8] 275 (4·00) 246, (3·62) [MeOH]
6-NMe ₂ -8-OEt-9-Me	$\textbf{4.64} \pm \textbf{0.01}$	$\begin{array}{c} 28\ddot{6} \ (4{\cdot}19), \ 276 \ (4{\cdot}24), \ 214 \\ (4{\cdot}33) \ [2{\cdot}0] \end{array}$
8-OEt-9-Me-6-NHMe	4.37 ± 0.05	$\begin{array}{c} 278 \ (4{\cdot}29), \ 217 \ (4{\cdot}35) \ \lfloor 8{\cdot}4 \rfloor \\ 277 \ (4{\cdot}19), \ 272 \ (4{\cdot}22), \ 212 \\ (4{\cdot}34) \ \lceil 1{\cdot}5 \rceil \end{array}$
8-0Et-2,6-Me ₂	$\begin{array}{c} 4 \cdot 71 \pm 0 \cdot 02 \\ 8 \cdot 74 \pm 0 \cdot 01 \end{array}$	270 (4·24), 210 (4·42) [7·0] 279 (3·98), 215 (4·28) [1·0] 277 (3·97), 229 (3·96), 210 (4·27) [6·6]
8-OEt-9-Me-6-SMe	1.82 ± 0.02	$\begin{array}{c} 282 \ (3 \cdot 98), \ 2\overline{2}0 \ (4 \cdot 20) \ [11 \cdot 9] \\ 320 \ (4 \cdot 28), \ 274 \ (3 \cdot 53), \ 238 \\ (4 \cdot 16), \ [-1 \cdot 0] \end{array}$
8-OEt-6-SEt-9-Me	с	$\begin{array}{c} 294 \ (4{\cdot}23), \ 288 \ (4{\cdot}22), \ 226 \\ (4{\cdot}21) \ [5{\cdot}2] \\ 320 \ (4{\cdot}28), \ 274 \ (3{\cdot}63), \ 239 \\ (4{\cdot}16) \ [-1{\cdot}0] \end{array}$
8-OEt-2-SEt-6,9-Me ₂		295 (4·26), 288 (4·22), 227 (4·20) [5·8] 300 (3·68), 264 (3·85), 228 (3·99) [MaOH]
9-Me-8-OPr-6-SPr	С	$\begin{array}{c} (3\cdot 99) \; [\text{MeOH}] \\ 320 \; (4\cdot 27), \; 274 \; (3\cdot 62), \; 239 \\ (4\cdot 15) \; [-1\cdot 0] \\ 295 \; (4\cdot 22), \; 287 \; (4\cdot 16), \; 228 \end{array}$
Others		(4.13) [5.5]
(4; $R = Et$)	С	$\begin{array}{c} 296 \ (3\cdot 91), \ 273 \ (4\cdot 12), \ 266 \\ (4\cdot 07), \ 223 \ (4\cdot 25) \ [1\cdot 2] \\ 297 \ (3\cdot 70), \ 272 \ (4\cdot 16), \ 267 \end{array}$
(4; $R = Pr$)	3.31 ± 0.01	$(4\cdot 15), 218 (4\cdot 33) [6\cdot 7]$ 297 (3·92), 273 (4·13), 264 (4·07), 222 (4·27), [1·2] 296 (3·74), 271 (4·16), 265
(5; $R = Et$, X = CH)	$\textbf{4.39} \pm \textbf{0.02}$	$egin{array}{llllllllllllllllllllllllllllllllllll$
	11.60 ± 0.01	281 (3·69), 275 (3·74), 269 (3·35), 242 (3·38), 235 (3·75) [8·3]
$\begin{array}{l} \textbf{(5; R = Pr,} \\ \textbf{X} = CH \textbf{)} \end{array}$	С	283 (3·83), 245 (3·57), [14·0] 276 (3·79), 270 (3·81), 223 (3·88) [1·0] 281 (3·73), 275 (3·78), 269
		(3.65), 242 (3.68), 235 (3.79) [8.4] 283 (3.83), 244 (3.56) [14.0]

	Т	ABLE 1 (Cor	ıtinued)	
	Compound	pK_a^a	λ_{\max} . (log ε) ^b [solvent or pH]	
(6:	R = Et	4.07 + 0.01	323 (3.80), 314 (3.76), 309	
(-)	,		(3.79), 300, (3.81), 296	
			(3.78), 290 (3.71), 285	
			(3.70), 276 (3.55), 238	
			(4.80), 235 (4.82) , 222	
			(4.68) [1.2]	
		11.15 ± 0.01	327 (3.84), 319 (3.79), 313	
			(3.82), 306 (3.83), 240	
			(4.87) [8.1]	
			333 (3·85), <i>321</i> (3·81), 250	
10			(4.82) [14.0]	
(0;	$\mathbf{R} = \mathbf{Pr}$)	С	$323(3\cdot84), 314(3\cdot79), 309$	
			$(3\cdot82)$, 300 $(3\cdot83)$, 296 $(3\cdot80)$, 290 $(3\cdot72)$, 285	
			(3.80), 290 (3.12), 283 (3.68), 276 (3.49), 238	
			(4.83), 235 (4.84), 222	
			$(4 \cdot 69)$, 200 (4 $\cdot 64)$, 200 $(4 \cdot 69)$ [1.2]	
			327(3.91), 319(3.87), 313	
			(3.89), 306 (3.89), 240	
			(4.91), [8.4]	
			334 (3·92), 321 (3·89), 250	
			(4.86), [14.0]	
(5;	R = Et, X = N	$4{\cdot}58\pm0{\cdot}01$	301 (4.21), 251 (3.33), 212	
			(3.92) [2.1]	
		9.97 ± 0.04	286 (4.08), 230 (3.56) [7.4]	
			296 (4.09) [12.3]	
(5;	$\mathbf{R} = \mathbf{Pr}, \mathbf{X} = \mathbf{N}$	С	301 (4.20), 251 (3.37), 212	
			(3.96) [2.0]	
^a Measured spectrometrically (A) Albert and F. P. Serieant				

⁶ Measured spectrometrically (A. Albert and E. P. Serjeant, ['] Determination of Ionization Constants,' Chapman and Hall, London, 1971) at 20° and concentrations <10⁻³M in buffers of 10⁻²M ionic strength (D. D. Perrin, *Austral. J. Chem.*, 1963, **16**, 572) without thermodynamic corrections. ^b Inflections and shoulders in italics. ^c Ionization assumed to approximate to that of homologue.

loosely stoppered tube at 195° for 20 min to give the purine (1f)}; 5-amino-4-methyl-6-methylaminopyrimidine-2-thione ²¹ (AcOH; reflux; 10 min) gave 5-diethoxymethyleneamino-2-ethylthio-4-methyl-6-methylaminopyrimidine (3c) (81%), m.p. 124-125° (from ethanol) (Found: C, 52·4; H, 7·4; N, 18·9. C₁₃H₂₂N₄O₂S requires C, 52·3; H, 7.4; N, 18.8%), and thence by heating at 170° for 40 min, 8-ethoxy-2-ethylthio-6,9-dimethylpurine (1h) (68%), m.p. 79-80° (from ethanol) (Found: C, 52.6; H, 6.3; N, 22.6. $C_{11}H_{16}N_4OS$ requires C, 52.4; H, 6.4; N, 22.2%); and 5-amino-6-methylaminopyrimidine-4-thione 20 $[(PrO)_4C; 5 155^\circ; 7 h]$ gave 9-methyl-8-propoxy-6-propylthiopurine (1 g) (44%), m.p. 55° (from light petroleum) (Found: C, 54.5; H, 6.9; N, 21.3. C₁₂H₁₈N₄OS requires C, 54·1; H, 6·8; N, 21·0%).

8-Methylthiopurine (2; $R^1 = R^2 = H$, $R^3 = SMe$).— 4,5-Diaminopyrimidine ²² (0.5 g), tetrakismethylthiomethane ⁶ (0.9 g), and acetic acid (2 ml) were boiled under reflux with stirring for 2 h. The residue from concentration under reduced pressure solidified on trituration with ether (10 ml). The solid was washed with fresh ether (2 × 10 ml) and recrystallized from water to give 4-amino-5-(bismethylthiomethyleneamino)pyrimidine (0.44 g), m.p. 157— 158° (Found: C, 39.5; H, 4.9; N, 26.5. C₇H₁₀N₄S₂ requires C, 39.3; H, 4.7; N, 26.2%). This pyrimidine (0.2 g) was heated at 200° for 1 h. The residue crystallized from water to give 8-methylthiopurine, identified by mixed m.p. (258°) and u.v. spectra.²³

4-Amino-5-diethoxymethyleneaminopyrimidine (3d).— 4,5-Diaminopyrimidine ²² (0·5 g), tetraethoxymethane (2·5 ml), ²¹ D. J. Brown, P. W. Ford, and K. H. Tratt, J. Chem. Soc. (C), 1967, 1445.

²² D. J. Brown, J. Appl. Chem., 1952, 2, 239.

²³ A. Ålbert and D. J. Brown, J. Chem. Soc., 1954, 2060; S. F. Mason, *ibid.*, p. 2071.

¹ H N.m.r. spectra ^{a}				
Purines	δ Values			
8-OEt-9-Me	8.87 (s, 2-H), 8.81 (s, 6-H), 4.71 (q, 17, CH ₂), 3.66 (s, 9-Me), 1.51 (t, 17, CMe)			
8-OEt-7-Me	9.01 (s 2-H), 8.58 (s, 6-H), 4.79 (q, J 7, CH ₂), 3.63 (s, 7.Me), 1.53 (t, J 7, CMe)			
6-Cl-8-OEt-9-Me	8.58 (s, 2-H), 4.75 (q, 1.7 , CH ₂) 3.65 (s. 9-Me), 1.53 (t, 1.7 , CMe)			
6-NMe ₂ -8-OEt-9-Me	8·36 (s, 2-H), 4·60 (q, 17, CH ₂), 3·54 (s, 9-Me), 3·46 (s, NMe ₂), 1·47 (t, 17, CMe)			
8-OEt-9-Me-6-NHMe	8·39 (s, 2-H), 4·57 (q, J 7, CH ₂), 3·58 (s, 9-Me), 3·16 (d, J 5, 6-NMe), 1·47 (t, J 7, CMe)			
8-OEt-2,6-Me ₂	4.67 (q, J 7, CH ₂), 2.78 (s, 2-Me), 2.70 (s, 6-Me), 1.48 (t, J 7, Me of Et)			
8-OEt-9-Me-6-SMe	8·64 (s, 2-H), 4·68 (q, J 7, CH ₂), 3·64 (s, 9-Me), 2·71 (s, SMe), 1·49 (t, J 7, CMe)			
8-OEt-6-SEt-9-Me	8.61 (s, 2-H), 4.68 (q, J 7, OCH ₂), 3.58 (s, 9-Me), 3.38 (q, J 7, SCH ₂), 1.49 (t, J 7, Me of OEt), 1.43 (t, J 7, Me of SEt)			
8-OEt-2-SEt-6,9-Me ₂	4.65 (q, J, 7, OCH ₂), 3.56 (s, 9-Me), 3.24 (q, J 7, SCH ₂), 2.64 (s, 6-Me), 1.50 (t, J 7, Me of OEt), 1.41 (t, J 7, Me of SEt)			
9-Me-8-OPr-6-SPr	8.61 (s, 2-H), 4.59 (t, J 7, OCH ₂), 3.59 (s, 9-Me), 3.37 (t, J 7, SCH ₂), 1.87 (m, both C·CH ₂), 1.07 (t, J 7, both CMe)			
8-SMe ^b	8·94 (s, 2-H), 8·84 (s, 6-H), 2·77 (s, Me)			
Pyrimidines ^e				
5-NH ₂ -4-SEt-6-NHMe	8.27 (s, 2-H), 5.20br (s, NH ₂), 3.20 (q, J 7, CH ₂), 3.01 (d, J 5, NMe), 1.33 (t, J 7, C-Me)			
5-De-4-SEt-6-NHMe	8.30 (s, 2-H), 4.32 (q, J 7, both OCH ₂), 3.15 (q, J 7, SCH ₂), 3.00 (d, J 5, NMe), 1.33 (t, J 7, all CMe)			
5-De-2-SEt-4-Me-6-NHMe	4·30 (q, J 7, both OCH ₂), 3·16 (q, J 7, SCH ₂), 2·99 (d, J 5, NMe), 2·11 (s, 4-Me), 1·39 (m, Me of SEt and both OEt)			
5-De-4-NHMe-6-SMe	8·36 (s, 2-H), 4·33 (q, J 7, both CH ₂), 3·02 (d, J 5, NMe), 2·51 (s, SMe), 1·36 (t, J 7, both CMe)			
4-NH ₂ -5-De	8.26 (s, 2-H), 8.19 (s, 6-H), 5.54br (s, NH ₂), 4.26 (q, $\int 7$, both CH ₂), 1.32 (t, $\int 7$, both Me)			
$4-\mathrm{NH}_2$ -6-Cl-5-De	8.15 (s, 2-H), 5.32br (s, NH ₂), 4.35 (q, J 7, both CH_2), 1.34 (t, J 7, both Me)			
$4-NH_2-5-Bm$	8.42 (s, 2-H), 8.00 (s, 6-H), 5.30 br (s, NH ₂), 2.55 (s, both Me)			
Others				
$(4; \mathbf{R} = \mathbf{Et})$	8·47 (s, 5-H), 4·58 (q, J 7, CH ₂), 3·19 (d, J 5, NMe), 1·47 (t, J 7, CMe)			
(4; S = Pr)	8·44 (s, 5-H), 4·45 (t, J 7, SCH ₂), 3·15 (d, J 5, NMe), 1·87 (sext., J 7, C·CH ₂), 1·03 (t, J 7, CMe)			
(5; R = Et, X = CH)	$7.25 (m, 4,5,6,7-H_4), 4.63 (q, J 7, CH_2), 1.44 (t, J 7, Me)$			
(5; $R = Pr, X = CH$)	$7.30 (m, 4, 5, 6, 7-H_4), 4.55 (t, J, 7, OCH_2), 1.86 (sext., J, 7, C-CH_2), 0.99 (t, J, 7, Me)$			
(6; $R = Et$) ^b	7.86 (m), 7.38 (m), 4.59 (q, f 7, CH ₂), 1.42 (t, f 7, Me)			
(6; R = Pr)	7.80 (m), 7.37 (m), 4.58 (t, J 7, OCH ₂), 1.88 (sext., J 7, C·CH ₂), 1.02 (t, J 7, Me)			
(5; $R = Et, X = N$)	8·27 (q, $J_{5.6}$ 5, $J_{5.7}$ 1·4, 5-H), 7·88, (q, $J_{6.7}$ 8, $J_{5.7}$ 1·4, 7-H), 7·18 (q, $J_{5.6}$, 5, $J_{6.7}$ 8, 6-H), 4·70 (q, J 7, CH ₂), 1·51 (t, J 7, Me)			
(5; $R = Pr, X = N$)	$8 \cdot 22 \left(\bar{q}, J_{5.6}, 5, J_{6.7}, 1.4, 5-H\right), 7.86 \left(q, J_{6.7}, 8, J_{5.7}, 1.4, 7-H\right), 7.15 \left(q, J_{5.6}, 5, J_{6.7}, 8, 6-H\right), 4.58 \left(t, J, 7, 1.4, 5-H\right), 7.15 \left(q, J_{5.6}, 5, J_{6.7}, 8, 6-H\right), 4.58 \left(t, J, 7, 1.4, 5-H\right), 7.15 \left(q, J_{5.6}, 5, J_{6.7}, 8, 6-H\right), 4.58 \left(t, J, 7, 1.4, 5-H\right), 7.15 \left(q, J_{5.6}, 5, J_{6.7}, 8, 6-H\right), 4.58 \left(t, J, 7, 1.4, 5-H\right), 7.15 \left(q, J_{5.6}, 5, J_{6.7}, 8, 6-H\right), 4.58 \left(t, J, 7, 1.4, 5-H\right), 7.15 \left(q, J_{5.6}, 5, J_{6.7}, 8, 6-H\right), 4.58 \left(t, J, 7, 1.4, 5-H\right), 7.15 \left(q, J_{5.6}, 5, J_{6.7}, 8, 6-H\right), 4.58 \left(t, J, 7, 1.4, 5-H\right), 7.15 \left(q, J_{5.6}, 5, J_{6.7}, 8, 6-H\right), 4.58 \left(t, J, 7, 1.4, 5-H\right), 7.15 \left(q, J_{5.6}, 5, J_{6.7}, 8, 6-H\right), 4.58 \left(t, J, 7, 1.4, 5-H\right), 7.15 \left(t, J_{5.6}, 5, J_{6.7}, 8, 6-H\right), 4.58 \left(t, J, 7, 1.4, 5-H\right), 7.15 \left(t, J_{5.6}, 5, J_{6.7}, 8, 6-H\right), 4.58 \left(t, J, 7, 1.4, 5-H\right), 7.15 \left(t, J_{5.6}, 5, J_{6.7}, 8, 6-H\right), 4.58 \left(t, J, 7, 1.4, 5-H\right), 7.15 \left(t, J_{5.6}, 5, J_{6.7}, 8, 6-H\right), 4.58 \left(t, J, 7, 1.4, 5-H\right), 7.15 \left(t, J_{5.6}, 5, J_{5.7}, 1.4, 5-H\right), 7.15 \left(t, J_{5.6}, 5, J_{6.7}, 8, 6-H\right), 7.15 \left(t, J_{5.6}, 5, J_{6.7}, 8, 6-H\right), 7.15 \left(t, J_{5.6}, 5, J_{5.7}, 1.4, 5-H\right), 7.15 \left(t, J_{5.7}, 1.4, 1.4, 1.4\right)$			

TABLE 2

22 (q, $J_{5.6}$ 5, $J_{5.7}$ 1·4, 5-H), 7·86 (q, $J_{6.7}$ 8, $J_{5.7}$ 1·4, 7-H), 7·15 (q, $J_{5.6}$ 5, $J_{6.7}$ 8, 6-H), 4·58 (t, J 7, OCH₂), 1·94 (sext., J 7, C·CH₂), 1·07 (t, J 7, Me)

^a Measured at 60 MHz and 33° in CDCl₃ (except as otherwise indicated); Me₄Si as internal standard; J values in Hz. ^b In $(CD_3)_2$ SO. ^c $De = (EtO)_2C:N$; $Bm = (MeS)_2C:N$.

and acetic acid (0.28 g) were heated and stirred under reflux for 30 min. The solid (0.68 g) which was deposited on refrigeration was triturated with N-potassium hydroxide and then washed with water to give the diethoxymethylene derivative, m.p. 109-110° (Found: C, 51-1; H, 6-9; N, 26.4. C₉H₁₄N₄O₂ requires C, 51.4; H, 6.7; N, 26.65%). 4-A mino-6-chloro-5-diethoxymethyleneaminopyrimidine

(3e).-4,5-Diamino-6-chloropyrimidine ²⁴ (0·2 g), tetraethoxymethane (1.8 g), and acetic anhydride (0.2 g) were stirred under reflux until the mixture was homogeneous (ca. 5 min). Refrigeration gave the chloro-5-diethoxymethyleneaminopyrimidine (0.16 g), m.p. 111-112° (from ethanol) (Found: C, 44.3; H, 5.4; N, 22.8. C₉H₁₃ClN₄O₂ requires C, 44.2; H, 5.4; N, 22.9%).

 $\hat{2}$ -Alkoxy-7-methylaminothiazolo[5,4-d]pyrimidines.— 5-Amino-6-methylaminopyrimidine-4-thione²⁰ (0.5 g), tetraethoxymethane (5 g), and acetic acid (0.2 g) were stirred at 80° for 4 h and then chilled. The solid was washed with cold light petroleum, subjected to t.l.c. [silica; chloroform-acetone (9:1)], and then sublimed $(80^{\circ} \text{ at } 0.02)$ mmHg) to give the 2-ethoxy-7-methylaminothiazolopyrimidine (4; R = Et) (0.26 g), m.p. 141° (Found: C, 46.0; H, 4.8; N, 26.6. C₈H₁₀N₄OS requires C, 45.7; H, 4.8; N, 26.65%). Use of tetrapropoxymethane at 95° for 1 h gave the 7-methylamino-2-propoxythiazolopyrimidine (4; R = Pr) (0.41 g), m.p. 131–132° (from ethanol) (Found: C, 48.3; H, 5.4; N, 25.3. C₉H₁₂N₄OS requires C, 48.2; H, 5.4; N, 25.0%).

²⁴ A. Albert, D. J. Brown, and G. Cheeseman, J. Chem. Soc., 1952, 4219.

2-Alkoxylated Fused Imidiazoles .- As in the purine series, o-phenylenediamine (AcOH; 30°; 30 min) gave 2-ethoxybenzimidazole (5; R = Et, X = CH) (73%), m.p. 166-167° (lit.,²⁵ 160-166°), identified by its i.r. spectrum; ²⁶ also 2-propoxybenzimidazole (5; R = Pr, X = CH) (93%), m.p. 164-165° (Found: C, 68·1; H, 6.8; N, 16.0. C₁₀H₁₂N₂O requires C, 68.2; H, 6.9; N, 15.9%). Similarly, 2,3-diaminonaphthalene (AcOH; 30°; 90 min) gave 2-ethoxynaphth[2,3-d]imidazole (6; R = Et) (>90%), m.p. 241–242° (from ethanol) (Found: C, 74.0; H, 5.6; N, 13.0. C₁₃H₁₂N₂O requires C, 73.6; H, 5.7; N, 13.2%) and its 2-proposy-homologue (6; R = Pr) (>90%), m.p. 167-168° (from aqueous ethanol) (Found: C, 74.5; H, 6.2; N, 12.5. $C_{14}H_{14}N_2O$ requires C, 74.3; H, 6.2; N, 12.4%); and 2,3-diaminopyridine (155°; 80 min) gave 2-ethoxyimidazo[4,5-b]pyridine (5; R = Et, X = N) (57%), m.p. 148-150° (from acetone) (Found: C, 59.5; H, 5.6; N, 26.0. C₈H₉N₃O requires C, 58.9; H, 5.6; N, 25.75%) and the 2-proposy-homologue (5; R = Pr, X = N) (82%), m.p. 121° (Found: C, 61·1; H, 6·3; N, 23.8. C₉H₁₁N₃O requires C, 61.0; H, 6.3; N, 23.7%).

We thank Drs. W. L. F. Armarego and J. H. Lister for discussions; Mr. S. E. Brown for measuring the n.m.r. spectra; and the Australian National University for supporting R. K. L. as a scholar.

[3/1777 Received, 24th August, 1973]

²⁵ E. Sandmeyer, Ber., 1886, 19, 2650; S. Takahashi and H. Kano, Chem. and Pharm. Bull. (Japan), 1964, 12, 282.
 ²⁶ D. Harrison and H. W. Jones, J. Chem. Soc. (C), 1969, 886.